
Chapter 44

Satellite orbits

In this chapter we will consider the problem of building up larger programs from smaller
ones. The idea is this: if you have one very big problem to solve, it is easier to break it
down into smaller pieces and then put all of the pieces together rather than trying to
solve everything all at once. This is a formed of systems analysis called top-down
development.

We will apply this to the study of a particular application, namely, that of predicting
the trajectory of a satellite in orbit around the earth. We will first study the physics,
then look at the basic algorithm, breaking it down into pieces.

However, don’t expect to learn any software engineering here. We are going to hack out
the solution by implementing the physics as directly and quickly as we can.

Overview of the Problem

We want to be able to predict the sub-satellite position (or ground track), on the
surface of the earth, of a near-earth orbiting satellite (such as the International Space
Station) as a function of time. We will accomplish this goal using slightly-perturbed
Keplerian motion, and by taking into account the rotation of the Earth. Here is a
summary of the basic facts from physics.

• According to Kepler’s theory (which we will later derive from Newton’s theory
using a point-mass approximation for the earth) the satellite’s orbit is an ellipse
with one focus of the ellipse at the center of the Earth.

• The ellipse is constrained to lie in a plane that is tilted at some angle with
Earth’s equatorial plane.

• The Earth is actually slightly blimpy, and is not a point mass. This causes a torque
to be exerted on the satellite. As a result, the orbit plane rotates about
the Earth’s polar axis. This rotation causes the orbit vector to be perturbed.

• Because the Earth rotates under the plane of the orbit, the ground track
drifts west. To see this, consider the plane of the orbit. A typical orbital period
is about 100 minutes. Consider where the orbit plane crosses the surface of the
Earth; without rotation, it will return to the same spot 100 minutes later. But
because the Earth is rotating, the orbit will appear to drift westward.

So how would we put these pieces together to predict the location at some time t = 1,
given the location at some time t = 0? Here is our “Basic Algorithm:”

419

420 Chapter 44. Satellite orbits

Algorithm 44.1 Orbital algorithm, pass 1

input: Initial state vector (position, velocity of satellite)
1: for each time step ∆t do
2: 1) Determine satellite movement in the 2D orbital plane using Kepler.
3: 2) Figure out how much the orbit plane has rotated.
4: 3) Convert the 2D position in the orbit to a 3D Earth-centered xyz.
5: 4) Convert the Earth-centered xyz to latitude/longitude, accounting for Earth

rotation.
6: end for
7: return

Orbits are Elliptical
Elliptical orbits1 are predicted by Newton’s law of gravity. Let rS and rE be the
position of the satellite and the position of the earth in some inertial coordinate frame,
and denote their respective masses by m and M . Then Newton’s law of gravity, in
combination with Newton’s second law of motion says that the force on the satellite by
the Earth is given by

mrS
′′ = −GmM

rS − rE
|rE − rS |3

(44.1)

while the equal and opposite force on the Earth, by the satellite, is given by

Mr′′E = −GmM
rE − rS
|rE − rS |3

(44.2)

where the derivative is taken with respect to time. Divide the first equation by m, the
second by M , and subtract, to get

r′′ = −G(M +m)
r

|r|3 (44.3)

where
r = rS − rE (44.4)

Define the reduced mass of the system as

µ = G(M +m) ≈ GM ≈ 3.986× 1014 m3/sec2 (44.5)

The approximation is valid because M ≈ 5 × 1024 kg and the heaviest satellites sent
into orbit are 10,000 kg, so that m�M is reasonable.

The fundamental equation of motion is then, from equations 44.3 and 44.4,

r′′ =
d2r

dt2
= −µr̂

r2
(44.6)

where r̂ is a unit vector in the same direction as r. Taking the cross product of (44.6)

1Technically, orbits are conic sections, which include parabolas and hyperbolas, but we will ignore that
distinction for now and only focus on near-earth circular orbits.

Scientific Computation: Python Hacking for Math Junkies

Chapter 44. Satellite orbits 421

with r gives

r × r′′ = −r ×
Å
µr̂

r2

ã
= 0 (44.7)

because the cross product of any vector with itself is zero:

r × r = 0 (44.8)

Next, we consider the following derivative, which we can calculate with the product
rule:

d

dt
(r × r′) = r × r′′ + r′ × r′ (44.9)

The first term is zero by (44.7), and the second term is zero because it is a cross product
of a vector with itself. This gives

d

dt
(r × r′) = 0 (44.10)

Define the angular momentum density vector as

h = r × r′ (44.11)

Thus
dh

dt
= 0 (44.12)

This gives us conservation of angular momentum.

Law of Conservation of Angular Momentum

h = c(constant) (44.13)

Take the cross product of the fundamental equation of motion (44.6) with the angular
momentum vector,

r′′ × h = −
Å
µr̂

r2

ã
× (r × r′) (44.14)

To evaluate the vector triple product r̂ × (r × r′) we will use the “BAC-CAB” identity

a× (b× c) = b(a · c)− c(a · b) (44.15)

hence
r̂ × (r × r′) = r(r̂ · r′)− r′(r̂ · r) (44.16)

Since r = rr̂,

r̂ × (r × r′) =
1

r
(r(r · r′)− r2r′) (44.17)

Hence from equation (44.14)

r′′ × h = −
(µ

r3

)
(r(r · r′)− r2r′) (44.18)

Since r is the magnitude of r, then r′ is the rate of change of r in a direction parallel to

Scientific Computation: Python Hacking for Math Junkies

422 Chapter 44. Satellite orbits

r. Hence

r′ =
dr

dt
= r̂ · r′ = 1

r
r · r′ (44.19)

Substituting this into (44.18) gives

r′′ × h = −
(µ

r3

)
(rrr′ − r2r’) = −

(µ

r2

)
(rr′ − rr’) (44.20)

But by the quotient rule
d

dt

(r
r

)
=

rr′ − rr′

r2
(44.21)

Hence

r′′ × h = µ
d

dt

(r
r

)
(44.22)

We can rewrite this as

v′ × h = µ
d

dt

(r
r

)
(44.23)

where v = r′. Reversing the order of the cross product,

h× v′ = −µ d

dt

(r
r

)
(44.24)

Multiply both sides of the equation by dt, and integrate∫
h× v′ dt = −µ

∫
d

dt

(r
r

)
dt (44.25)

Since h is a constant we can pull it out of the integral on the left. Further, we can write
v′ = dv/dt so that

h×
∫

dv

dt
dt = −µ

∫
d

dt

(r
r

)
dt (44.26)

By the fundamental theorem of calculus,

− h× v = µ
r

r
+ C (44.27)

where C is a (vector) constant of integration. The standard notation is define an
eccentricity vector e = C/µ, so that

v × h = µ
(r
r
+ e
)

(44.28)

The reason for the name eccentricity will become apparent later. Taking the dot product
of (44.28) with r gives

(v × h) · r = µ
(r
r
+ e
)
· r = µ(r + r · e) (44.29)

Using the vector identity (a× b) · c = (c× a) · b, and then substituting the definition of
angular momentum (h = r × v, from equation (44.11)),

(v × h) · r = (r × v) · h = h · h = h2 (44.30)

Scientific Computation: Python Hacking for Math Junkies

Chapter 44. Satellite orbits 423

where h is the constant magnitude of the angular momentum per unit mass. Substitut-
ing (44.30) into (44.29) gives us

h2 = µ(r + r · e) (44.31)

Define θ as the angle between r and the constant vector e. Then

h2 = µ(r + re cos θ) = µr(1 + e cos θ) (44.32)

Solving for r

r =
h2/µ

1 + e cos θ
(44.33)

This is the equation from analytic geometry for an ellipse with semi-parameter p =
h2/µ and eccentricity e, in polar coordinates. The semi-parameter is more commonly
written in terms of the semi-major axis and eccentricity as

p = a(1− e2) (44.34)

Thus we get the following result.

Orbit Position in Polar Coordinates

The distance r from the center of the earth is

r =
a(1− e2)

1 + e cos θ
(44.35)

Here a is semi-major axis, e is eccentricity, θ is central angle measured from the
point of closest approach, and h2 = µa(1− e2).

The Vis-Viva Equation

The potential energy for a satellite of mass m in the earth’s gravity is

Epotential = −
µm

r
(44.36)

where µ = GM , as defined previously, and the kinetic energy is

Ekinetic =
1

2
mv2 (44.37)

where v is the velocity, as defined in the previous section. By the law of energy
conservation the total energy E is a constant

E = Ekinetic + Epotential =
1

2
mv2 − µm

r
(44.38)

Scientific Computation: Python Hacking for Math Junkies

424 Chapter 44. Satellite orbits

Let r1, v1 and r2, v2 be the position and velocity of a satellite at two different points in
its orbit. Then by energy conservation,

1

2
mv21 −

µm

r1
=

1

2
mv22 −

µm

r2
(44.39)

Canceling out the common factor of m,

v21
2
− µ

r1
=

v22
2
− µ

r2
(44.40)

From equation 44.35, at θ = 0, r(0) = a(1−e). This distance is called perigee, because
it is the closest point to the origin.2 Furthermore, at perigee the velocity and the
radius are perpendicular to one another, so the magnitude of the angular momentum is
h = rperigeevperigee. From the equation in the discussion following (44.35)

h2 = µa(1− e2) = r2perigeev
2
perigee (44.41)

Hence, since rperigee = a(1− e),

v2perigee =
µa(1− e2)

a2(1− e)2
=

µ

a

1 + e

1− e
(44.42)

If we let r1 be any point on the orbit, and r2 be perigee, then equation (44.40) gives us

v2

2
− µ

r
=

µ

2a

1 + e

1− e
− µ

a(1− e)
=

µ

2a

ï
1 + e

1− e
− 2

1− e

ò
= − µ

2a
(44.43)

Solving for v2 gives the Vis-Viva Equation

Vis-Viva Equation

v2 = µ

Å
2

r
− 1

a

ã
(44.44)

where v is the satellite velocity, r its distance from the center of the Earth,
a the orbital semi-major axis, µ = GM , G is Newton’s universal constant of
gravitation, and M is the mass of the earth.

Keplerian Orbits
We have shown that in the absence of any outside forces, when a satellite orbiting about
the Earth is treated like a point mass we end up with elliptical orbits. This is the essence
of Keplerian orbital dynamics. Kepler’s orbital description provides a reasonable first
order description of planetary motion and, in fact, only slight adjustments are necessary
to get extremely accurate predictions of satellite orbits. Our description of elliptical
motion in a plane is given by figure 44.1. We know from equation 44.35 that if we place
the focus of the ellipse at the origin and the perigee (nearest point on the orbit to the

2It is only called perigee when the central body is Earth. If the central body is, eg., the sun, moon or
Jupiter, we use the terms perihelion, perilune, or perijove. The general term is periapsis.

Scientific Computation: Python Hacking for Math Junkies

Chapter 44. Satellite orbits 425

Figure 44.1: Description of an elliptical orbit. The origin is off-centered from the center
of the ellipse by a distance ae along the x-axis.

y

θE
r

a

Focus

Satellite
Eccentric
Anomaly

True
Anomaly

a a

ae

Center of orbit
P

C E

S

focus) on the positive x axis, then

r =
a(1− e2)

1 + e cos θ
(44.45)

where θ, called the true anomaly, is the ordinary polar angular coordinate. The center
of the ellipse in displaced from the origin by a distance ae to the left in this figure.

Suppose the satellite has polar coordinates (r, θ). Then in Cartesian coordinates,

(x, y) = (r cos θ, r sin θ) (44.46)

Form the following construction, as illustrated in figure 44.1

1. Construct a circle of radius a circumscribing the ellipse.
2. Drop a perpendicular line ` from the satellite’s location S to the x axis.
3. Denote by P the intersection of ` and the circle.
4. Draw a line segment from P to the center C of the circle.
5. The angle E = ∠PCE (E is the focus) is called the eccentric anomaly.

In terms of the eccentric anomaly,

a cosE = ae+ x (44.47)

hence
x = a(cosE − e) (44.48)

Using (44.46) in (44.45)

r =
a(1− e2)

1 + ex/r
(44.49)

Scientific Computation: Python Hacking for Math Junkies

426 Chapter 44. Satellite orbits

Cross-multiplying and solving for r,

r = a(1− e2)− ex = a(1− e2)− ea(cosE − e) (44.50)

= a− ae2 − ea cosE + ae2 = a(1− e cosE) (44.51)

By the Pythagorean theorem,

y2 = r2 − x2 = a2(1− e cosE)2 − a2(cosE − e)2 (44.52)

= a2(1− 2e cosE + e2 cos2 E − cos2 E + 2e cosE − e2) (44.53)

= a2(1 + e2 cos2 E − cos2 E − e2) (44.54)

= a2(1− e2)(1− cos2 E) (44.55)

so that
y = a

√
1− e2 sinE (44.56)

We don’t have to worry about getting the correct sign of y because the the sign of sinE
will always give us the correct quadrant.

Differentiating (using (44.48) and (44.56))

dx

dt
= −a sinEdE

dt
(44.57)

dy

dt
= a

√
1− e2 cosE

dE

dt
(44.58)

From the definition of angular momentum, h = r × v. In the coordinate frame shown,
with the z axis out of the plane of the paper,

h =

∣∣∣∣∣∣
i j k
x y 0
x′ y′ 0

∣∣∣∣∣∣ = k(xy′ − yx′) (44.59)

Hence

h = a(cosE − e)
Ä
a
√
1− e2 cosE

ä
E′ + (a

√
1− e2 sinE)(a sinE)E′ (44.60)

= a2
√
1− e2

[
(cosE − e) cosE + sin2 E

]
E′ (44.61)

= a2
√
1− e2(1− e cosE)E′ (44.62)

From equation 44.35, h2 = µa(1− e2), hence

µa(1− e2) = a4(1− e2)(1− e cosE)2 (E′)
2

(44.63)

After some cancellation,

µ = a3(1− e cosE)2 (E′)
2

(44.64)

Dividing by a3 and taking the square root,…
µ

a3
= (1− e cosE)E′ (44.65)

Scientific Computation: Python Hacking for Math Junkies

Chapter 44. Satellite orbits 427

Let tP be the time at which the satellite passes through perigee. Multiply equation
(44.65) by dt and integrate from tP :∫ t

tP

…
µ

a3
dt =

∫ E(t)

E(tp)

(1− e cosE)E′ dt (44.66)

Pulling out the constant on the left hand side and integrating it, and writing E′dt = dE…
µ

a3
(t− tP) =

∫ E(t)

E(tp)

(1− e cosE) dE = (E − e sinE)

∣∣∣∣E(t)

0

= E − e sinE (44.67)

where the last step follows because E(tp) = 0.

Mean Motion

The mean motion is

n =

…
µ

a3
(44.68)

where µ = GM and a is the semi-major axis, gives an equivalent velocity as if
the satellite were moving in a circular orbit at a fixed velocity with the same
period.

In terms of the mean motion, the angular position of the satellite can be found at any
later time from equation (44.67) by solving Kepler’s Equation.

Kepler’s Equation

E − e sinE = n(t− tP) = M (44.69)

Where E is the eccentric anomaly, e is the orbital eccentricity, M is mean
anomaly, tP is the time of periapsis passage, and n is the mean motion.

The number M , defined by the last equal sign of (44.69) is called the Mean Anomaly.
The Mean Anomaly is an equivalent angle that changes linearly in time.

Mean Anomaly

The mean anomaly is an equivalent angle that changes linearly in time.

If we let τ be the period of the satellite, then the eccentric anomaly will be 2π. This
gives

2π = nτ = τ

…
µ

a3
(44.70)

Squaring both sides of the equation and rearranging gives Kepler’s third law.

Scientific Computation: Python Hacking for Math Junkies

428 Chapter 44. Satellite orbits

Kepler’s Third Law of Planetary Motion

4π2

µ
a3 = τ2 (44.71)

This shows that Kepler’s famous result, that the square of the period is proportional to
the cube of the semi-major axis, follows from Newton’s laws of motion.

Now we are able to produce an algorithm that predicts the position of a satellite in
its orbital plane. Given the orbital elements a, e, and time of perigee passage tp, we
calculate the position of the satellite in the plane of the ellipse using algorithm 44.2.

Algorithm 44.2 Algorithm OrbitPosition for motion in a Keplerian orbit.

input: Orbital elements v that include: a (semi-major axis); e (orbital eccentricity); tp
(time of perigee passage); t (current time); ε (a very small number, tolerance, say
10−10

1: n←
√
mu/a3

2: M ← n(t− tp)
3: E ←M
4: while |E −M | > ε do
5: E ←M + e sinE Fixed point iteration for E
6: end while
7: x← a(cosE − e)
8: y ← a

√
1− e2 sinE

9: return (x, y) as OrbitPosition(v, t)

We want to define a function OrbitPosition(v, t) that will take as its input a Keplerian
input vector v = (a, e, i,Ω, ω,M) at some time t = 0, and determine the position and
(x, y), as measured in the plane of the orbit, a time t later.

Note that the x coordinate here is the coordinate parallel to the p axis (the axis through
the center of the orbit to perigee), and the y coordinate is the coordinate parallel to the
q axis (in the plane of the axis, through the focus, normal to p), so it might be better
to call these numbers (p, q) rather than (x, y).

We can now revise algorithm 44.1. For input, NASA provides orbital elements in two
forms, either with the mean anomaly M or the time of periapsis passage tp. If tp is
given, the mean anomaly can be recovered from equations 44.68 and 44.69.

Out of the Plane: Kepler’s Elements
We have shown that in the absence of external perturbations the orbit is an ellipse. We
also now know how to calculate the trajectory in that ellipse. The next step to to orient
that ellipse in three dimensions.

Because the problem is three dimensional, every vector has three components. Because
Newton’s law is a second order differential equation, there are two initial conditions be-
cause two integrations are performed. So two constants are required in each coordinate

Scientific Computation: Python Hacking for Math Junkies

Chapter 44. Satellite orbits 429

Algorithm 44.3 Orbital algorithm, pass 2

input: Orbital element vector v = (a, e, i,Ω, ω,M)
1: for Each time point t do
2: 1) (p, q)←OrbitPosition(v, t)
3: 2) Figure out how much the orbit plane has rotated.
4: 3) Convert the 2D position in the orbit to a 3D Earth-centered xyz.
5: 4) Convert the Earth-centered xyz to latitude/longitude, accounting for Earth

rotation.
6: end for
7: return

Figure 44.2: Definition of the Keplerian elements used to orient an orbital plane in
space.

�

�
i

Perigee
z axis - North Pole

x-axis - in Equator
Towards Vernal Equinox

y-axis
in Equator
by RH Rule

orbital
inclination

argument
of perigee

right ascension
of ascending
node

Direction
of motion

for a total of six constants. In Cartesian coordinates we could start with the coordinates
(x, y, z) and the velocity (x′, y′, z′) for our six numbers.

Instead of using position and velocity for his six coordinates, Kepler defined a set of six
parameters based on the geometry of the problems. Three of these parameters, a, e,
and tp, describe the position of the satellite within the ellipse.

The other three parameters tell the orientation of the ellipse in space (see figure 44.2).
In this coordinate system, the origin is at the center of the Earth, but:

1. The x axis points to the intersection of the Earth’s equatorial plane and its orbital
plane, called the first point in Aries or the vernal equinox.

2. The z axis points through the north pole.
3. The y axis is 90 degrees lies in the plane of the Earth’s equator in such a way that

the three axes make a right-handed coordinate system.

In this frame, we now define three additional parameters.

Scientific Computation: Python Hacking for Math Junkies

430 Chapter 44. Satellite orbits

Table 44.1. Typical Orbital Elements for the International Space Sta-
tion

Cartesian Elements (J2K)
Element Value
x, meters -5107606.49
y, meters -1741563.23
z, meters -4118273.08
x′, m/sec 4677.962842
y′, m/sec 4677.962842
z′, m/sec -3800.652800

Kepler Elements (M50)
Element Value
a, meters 6780663.07

e, dimensionless .0011495
i, degrees 51.52894
ω, degrees 38.42846
Ω, degrees 341.20455
M , degrees 191.97036

Epoch: 2015:044:12:00:00.000 UTC. Cartesian elements are in an inertial mean of year 2000
frame of reference, and the Kepler elements are the mean (averaged) elements in an inertial
mean of year 1950 frame of reference.

Source: http://spaceflight.nasa.gov/realdata/elements/

1. i, the orbital inclination, or angle between the plane of the orbit an the earth’s
equitorial plane;

2. Ω, the right ascension of ascending node, the angle measured along the equa-
tor from the x-axis to the point where the orbital plane intersects the equatorial
plane, going from south to north; and

3. ω, the argument of perigee, the angle measured in the plane of the orbit from
the equatorial plane to the line from the center of the earth to perigee.

The vector v=(a, e, tP , i,Ω, ω) gives us the initial conditions of the orbit. We can replace
tP byM and (mathematically) get the equivalent information from v1 = (a, e, i,M,Ω, ω).
The parameter tp is physically measurable, while M must be calculated using Kepler’s
equation, so the first form is typically considered more reliable. NASA provides the
elements in both forms and the conversion can be made using equations 44.68 and
44.69.

We already know how to calculate the position within the plane of the orbit. We need to
know how to calculate the transformation matrix between the coordinates in the (p,q)
plane and the xyz frame we have just defined. We will do this by first extending the
(p,q) plane into a 3D coordinate frame.

1. p axis points from the center of the Earth towards perigee.
2. q axis points from the center of the Earth, in the plane of orbit, to a point on the

path of the orbit that is 90 degrees advanced from the satellite’s motion.
3. w axis points from the center of the Earth and is orthogonal to the orbit plane so

as to make pqw a right-handed coordinate frame.

We will designate unit vectors along each of the axes in the pqw frame as p, q, and w,
and unit vectors in the xyz frame by i, j, k. The following sequence of rotations will
transform the xyz frame to the pqw frame:

1. Rotate by Ω (right ascension of ascending node) about the z axis. Call the new x
axis x′.

Scientific Computation: Python Hacking for Math Junkies

http://spaceflight.nasa.gov/realdata/elements/

Chapter 44. Satellite orbits 431

2. Rotate by i (inclination) about the x’-axis. Call the new z axis z′′.
3. Rotate by ω (argument of perigee) about the z′′ axis.

This will transform the axes as follows:

i→ p, j→ q, k→ w (44.72)

Let Rv(θ) be the standard rotation matrix about the axis v. These can be found in any
standard textbook on linear algebra. Then[

p
q
w

]
= Rz(ω)Rx(i)Rz(Ω)

[
i
j
k

]
(44.73)

=

[
cosω sinω 0
− sinω cosω 0

0 0 1

][
1 0 0
0 cos i sin i
0 − sin i cos i

][
cosΩ sinΩ 0
− sinΩ cosΩ 0

0 0 1

][
i
j
k

]
(44.74)

=

[
cosω sinω 0
− sinω cosω 0

0 0 1

][
cosΩ sinΩ 0

− cos i sinΩ cos i cosΩ sin i
sin i sinΩ − sin i cosΩ cos i

][
i
j
k

]
(44.75)

=

[
cosω cosΩ− sinω cos i sinΩ cosω sinΩ + sinω cos i cosΩ sinω sin i
− sinω cosΩ− cosω cos i sinΩ − sinω sinΩ + cosω cos i cosΩ sin i cosω

sin i sinΩ − sin i cosΩ cos i

][
i
j
k

]
(44.76)

Once we have the satellite’s position (p, q) from OrbitPosition(v,t), then the orbital
position in Earth centered coordinates is

r = pp+ qq (44.77)

= p(pxi+ pyj+ pzk) + q(qxi+ qyj+ qzk) (44.78)

= (ppx + qqx)i+ (ppy + qqy)j+ (ppz + qqz)k (44.79)

This is summarized in algorithm 44.4

Algorithm 44.4 Algorithm PQ2XYZ to convert from orbital position to earth cen-
tered coordinates.
input: (p, q), coordinates in (p, q) (from OrbitPosition)
1: px ← cosω cosΩ− sinω cos i sinΩ
2: py ← cosω sinΩ + sinω cos i cosΩ
3: pz ← sinω sin i
4: qx ← − sinω cosΩ− cosω cos i sinΩ
5: qy ← − sinω sinΩ + cosω cos i cosΩ
6: qz ← sin i cosω
7: wx ← sin i sinΩ
8: wy ← − sin i cosΩ
9: wz ← cos i

10: r← (ppx + qqx)i+ (ppy + qqy)j+ (ppz + qqz)k
11: return r

We are ready for a third pass at the orbit algorithm now.

Scientific Computation: Python Hacking for Math Junkies

432 Chapter 44. Satellite orbits

Algorithm 44.5 Orbital algorithm, pass 3

input: Orbital element vector v = (a, e, i,Ω, ω,M)
1: for At each time t do
2: 1) (p, q)←OrbitPosition(v, t)
3: 2) Figure out how much the orbit plane has rotated.
4: 3) (x, y, z)← PQ2XYZ(p, q)
5: 4) Convert the Earth-centered xyz to latitude/longitude, accounting for Earth

rotation.
6: end for
7: return

Perturbed Keplerian Orbits

In low earth orbits the main perturbing force that causes deviations from Keplerian
motion is due to the Earth’s oblateness. To be really accurate – and for some purposes
this is required – there are hundreds of additional terms that need to be added to New-
ton’s law of gravity. 3 It may also be necessary to include lunar and solar gravitational
effects. The general idea is to expand the gravity field as a sum of spherical harmonics:

V =
µ

r

[
1 +

∞∑
n=2

(a
r

)n n∑
m=0

Pnm(sinφ)(cnm cosmλ+ snm sinmλ)

]
(44.80)

The gravitational force then becomes

F = −∇V = −r∂V
∂r

+
φ

r

∂V

∂φ
+

θ

r sinφ

∂V

∂θ
(44.81)

where Pnm are the associated Legendre Polynomials, and φ and λ are the geocentric
latitude and longitude. In practice, of course, the series cannot be taken to infinity as
not all terms have been measured. In the EGM2008 Gravity model the coefficients are
known to spherical harmonic degree 2159.4 In the Newtonian approximation only the
first terms remains in the gravitational field,

V =
µ

r
and F = −r∂V

∂r
= −µr

r3
(44.82)

A simpler expansion that assumes the potential is an oblate spheroid and ignores other
variations is given by5

V =
µ

r

[
1−

∞∑
n=2

JnPn(sinφ)

]
(44.83)

3If you are interested I’ve written a paper with one way of describing these deviations. See Shapiro
and Bhat, GTARG, the TOPEX/Poseidon Ground Track Maintenance Maneuver Targeting Program,
AIAA Aerospace Design Conference, Irvine, Feb 16-19, 1993, AIAA Paper 93-1129.

4see http://earth-info.nga.mil/GandG/wgs84/gravitymod/egm2008/index.html
5Y Kozai, Second Order Solution of Artificial Satellite Theory Without Air Drag, Astronomical Journal,
67:446 (1962).

Scientific Computation: Python Hacking for Math Junkies

http://earth-info.nga.mil/GandG/wgs84/gravitymod/egm2008/index.html

Chapter 44. Satellite orbits 433

The negative sign in the sum is a convention, and like the earlier approximation, the
sum is rarely taken to very high degree. The principal perturbation is due to the J2
effect, and we will ignore all higher order perturbations, as they are much smaller. The
effect on the orbital elements is a constant rate of change, called a secular perturbation.
The result (which we will not derive here) is

da

dt
=

de

dt
=

di

dt
= 0 (44.84)

dΩ

dt
= −

(re
a

)2 3J2n cos i

2(1− e2)2
(44.85)

dω

dt
= −

(re
a

)2 3J2n(5 cos
2 i− 1)

4(1− e2)2
(44.86)

dM

dt
= n

Ç
1−

(re
a

)2 3J2(1− 3 sin2 i sin2 ω)

2(1− e)3

å
(44.87)

A good value for J2 ≈ 0.000108263. Here re ≈ 6378.140 km is the approximate equato-
rial radius of the earth.

The next most important perturbation on low earth orbits is drag, which mainly affects
the semi-major axis according to

da

dt
= −ρACDµa

m

[
1− ωE

n
cos i

]2
(44.88)

and has very little affect on the other elements. Here ρ is the atmospheric density at
the altitude of the satellite; CD ≈ 2.2 the drag coefficient; A the satellite cross-sectional
area normal to its direction of motion; and ωE ≈ 2π/86400 radians/second the earth
rotation rate.

Recalling Euler’s method for solving an initial value problem, the numerical solution of

dy

dt
= f(t, y) y(ti) = yi (44.89)

is given approximately by

y(ti+1) = y(ti) +
dy

dt

∣∣∣∣
t=ti

(ti+1 − ti) = y(ti) +
dy

dt

∣∣∣∣
t=ti

∆t (44.90)

Based on this, a single-step in Euler’s method for propagating the Kepler elements is
given by PropStep(v, ∆t) in algorithm 44.6.

This gives us the next iteration of our basic algorithm (pass 4).

Satellite Ground Track

To convert a satellite position to local sub-satellite ground track in latitude and longitude
you must take into account the Earth’s rotation. That is because the x axis, in which

Scientific Computation: Python Hacking for Math Junkies

434 Chapter 44. Satellite orbits

Algorithm 44.6 Euler’s method algorithm for PropStep.

input: Orbital element vector v = (a, e, i,Ω, ω,M); time step ∆t.
1: n←

√
µ/a3

2: ∆a← −ρACDµa

m

[
1− ωE

n
cos i

]2
∆t

3: ∆Ω← −
(re
a

)2 3J2n cos i

2(1− e2)2
∆t

4: ∆ω ← −
(re
a

)2 3J2n(5 cos
2 i− 1)

4(1− e2)2
∆t

5: ∆M ← n

Ç
1−

(re
a

)2 3µJ2(1− 3 sin2 i sin2 ω)

2(1− e)3

å
∆t

6: ∆v← (∆a, 0, 0,∆Ω,∆ω,∆M)
7: v← v +∆v
8: return v as PropStep(v, ∆t)

Algorithm 44.7 Orbital algorithm, pass 4

input: Orbital element vector v = (a, e, i,Ω, ω,M)
1: for At each time t do
2: 1) (p, q)←OrbitPosition(v, t)
3: 2) v ← PropStep(v,∆t)
4: 3) (x, y, z)← PQ2XYZ(p, q)
5: 4) Convert the Earth-centered xyz to latitude/longitude, accounting for Earth

rotation.
6: end for
7: return

the satellite coordinates are calculated, is fixed,6 whereas the x axis for the longitude
has a 24-hour period.

This relationship is given approximately by the formula7

θ = 100.460618375 + 36000.770053608336t+ 0.0003879333t2

+ 15h+
m

4
+

s

240
mod 360.0

(44.91)

where t is the time since Jan. 1, 2000 in centuries, and h:m:s is the current time in
hours, minutes, and seconds. The result of this formula is an angle in degrees. Then
the longitude is

longitude = tan−1 y

x
− θ (44.92)

in degrees, where x and y are the satellite coordinates.

Now we have a bit of a complication, because we have to include an actual time, rather
than just a relative time from the start of the calculation.

Let us create (exercise 44.9) a function xyz2latlog which takes as input a vector (x, y, z)

6Well, not really, it has a 26,000 year period, but is essentially fixed over the duration of your calculation.
7See P. K. Seidelmann, Explanatory Supplement to the Astronomical Almanac, US Naval Observatory,
1961.

Scientific Computation: Python Hacking for Math Junkies

Chapter 44. Satellite orbits 435

at some absolute time (use whatever coordinates you want, such as Nov 17, 2010 at 9:43
AM), and converts it to the correct latitude and longitude. Times are typically much
easier to work with if we convert them into a continuous real valued number of days
from some arbitrary origin, such as Jan 1. 2000 at 12:00 AM. One way to do this is
with the Python DateTime package.

>>> import datetime
>>> t=datetime(2015,1,7,10,07,14)
>>> tz=datetime.datetime(2000,1,1,0,0,0)
>>> t-tz
datetime.timedelta(5485, 36434)
>>> (t-tz).days
5485
>>> (t-tz).seconds
36434

Including xyz2latlong, our fifth iteration is given by algorithm 44.8.

Putting it all together, we can now write an Euler’s method algorithm (algorithm 44.9)
to predict the satellite orbit and ground track with the function prop.

Algorithm 44.8 Orbital algorithm, pass 5

input: Orbital element vector v = (a, e, i,Ω, ω,M)
1: for At each time t do
2: 1) (p, q)←OrbitPosition(v, t)
3: 2) v ← PropStep(v,∆t)
4: 3) (x, y, z)← PQ2XYZ(p, q)
5: 4) (λ, θ)← xyz2latlong(x, y, z; t)
6: end for
7: return

Algorithm 44.9 Orbit Propagation

input: Orbital element vector v = (a, e, i,Ω, ω,M); tstart, ttend, ∆t.
1: t← tstart
2: while t < t end do
3: (p, q)← OrbitPosition(v,∆t)
4: v← PropStep(v,∆t)
5: (x, y, z)← PQ2XYZ((p, q), v)
6: (λ, θ)← xyz2latlong(x, y, z; t)
7: t← t+∆t
8: Print coordinates or plot on a map.
9: end while

After you produce a list of latitude and longitude coordinates describing the orbit, you
can plot them on a map of the world. You just have to choose a map projection and
add the list of map coordinates to the map as a line plot. You can do this with the
Basemap package as described in chapter 45.

Scientific Computation: Python Hacking for Math Junkies

436 Chapter 44. Satellite orbits

Exercises

1. The mean anomaly M and eccentric
anomaly E are two different angles used to
measure the position of an object within the
plane of its orbit. They are related by Ke-
pler’s equation M = E − e sinE, where e is
the orbital eccentricity. Suppose that you
are given the value of e, where 0 ≤ e < 1,
and that you know the value of M . Write
a program to solve for E using fixed point
iteration.

2. Write a program that takes as input a satel-
lite’s Keplerian elements at a given time
and converts them to Earth centered ele-
ments (xyz) at the same time.

3. Write a program that takes as input a satel-
lite’s Keplerian elements at a given time,
and calculates the sub-satellite latitude and
longitude at the same time.

4. Write a program that takes as input a set
of Keplerian orbit elements at some time t,
and predicts the orbital elements at some

later time t′, assuming that there are no
perturbations on the orbit.

5. Modify the program in the previous exercise
to also calculate the latitude and longitude
at a fixed interval between t and t′ and print
out a table of values.

6. Modify the program in exercise 4 to include
J2 perturbations.

7. Modify the program in exercise 5 to include
J2 perturbations.

8. Look up the orbital elements of the inter-
national space station. Write a computer
program to figure out when it will pass
nearly overhead at night during the next
3 weeks. Check your predictions online at
http://spotthestation.nasa.gov/.

9. Write the algorithm for xyz2latlong.
Hint: see the discussion starting around eq.
44.91.

Scientific Computation: Python Hacking for Math Junkies

http://spotthestation.nasa.gov/

